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This report is the annual report of the research project entitled

T, G s

"Fluid and Thermodynamic Characteristics of Compressible Recoil Mechanism"
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covering the period from June, 1978 to August, 1979.

i

The project origi~

i

LSRR

nally was funded on February 1, 1977 for a three year period of research

5
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by the U. S. Army Weapon Command of Rhode Island, Illinois. However, the

project was interrupted after the first year on February 1, 1978 because

"

* e
}i %%; of the reorganization of the U. S. Army Armament Research and Development
& §§§ Command. The project was then reactivated by the U. S. Army Armament
B
?*g} Research and Development Command from Dover, N. J. through U. S. Army

Research Offices in North Carolina under the contract DAAG 29-78-G-0120
under a reduced funding level at approximately a one-half budget for the
period from June, 1978 to August, 1979. The research effort thus is

accordingly also reduced. The portion of the proposed experimental
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o e ot g s sk AN AN G
T R/ UL AP DA A S EALE S o Sk

investigation was thus terminated and the effort is concentrated in the
development of the numerical prediction for the fluid motion in the
recoil mechanism. Substantial progress has been made in the numerical
solution to the Navier-Stokes equation at high Reynolds number from the
development of the new numerical scheme called "Finite Differential
Method". An outline of the procedure of applying the method to the
recoil mechanism is given which can be carried out in the third year

effort.

The project was conducted by Professors C. J. Chen and

L At D Wk P i R LRI

E. 0. Macagno with graduate research assistants N. H. Naseri-Neshat

PP Lol LS BT,

-1
and A. M., Fard-Behbahani. £
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I. INTRODUCTION

The recoil mechanism 18 a component of the recoil system which pro-

vides a retarding force acting on the gun so as to brake the rearward

motion in the firing cycle. The counter~recoil mechanism is also a com-

ponent of the recoil mechanisms which stores the energy during the recoil
and dispenses it during the counter-recoil phase so as to bring the gun

back into its in-battery position. Without a recoil system, the force

acting on the gun and its mounts induced by firing the charge is so
large that damages to the gun often immediately result. An improperly
designed recoil mechanism can also affect the accuracy of the gun in hit-
ting the target and reduce the life of the gun. Therefore, the recoil
system is one of the most important components of a gun system.

Frequent failure and the undesirable characteristic of many springs
used in the recoil mechanism prompted recent designers of a gun system to
adopt more fluid-type recoil mechanisms (hydropneumatic) or the combination
of fluid and sprirg type recoil mechanisms (hydrospring). The fiuid recoil
mechanism, gas or liquids, is throttling during a firing cycie through an

orifice which divides the recoil mechanism into two or mure chambers. The

difference in the pressure between the chambers thus provides the retarding

force for braking action. The retarding force and the counter-recoiling

force are thus functions of the fluid motion, the type of fluids, and the
orifice geometry of recoil mechanisms. Therefore, the knowledge of
fluid mechanics of the recoil mechanism is an indispensable part of the

weapon design.

The fluid type of record mechanism was considered in the 1960's by
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the Rock Island Arsenal and the Iowa Institute of Hydraulic Research
[1-5]. However, it was found [4] that the designed recoil characteristic
such as retarding force and recoiling motion often do not agree with the
experimental measurement. The reason for this discrepancy is largely due
to lack of detailed knowledge about the fluid dynamic characteristics of
the recoil mechanisms. In particular, the value of the orifice discharge
coefficient which determines the flow rate through the orifice and, hencc
the retarding force during recoil motion. The value of the orifice dis-
charge coefficient in many designs was assumed to be comstants, typically
ranging from 0.6 to 0.9, which were obtained from experiments of steady
flow through stationary orifice. However, the unsteady flow in the
recoil mechanisms is created by the unsteady motion of the orifice.
Indeed, the orifice discharge coefficient should be the orifice discharge
function and should depend on the flow velocity and the location and
geometry of the orifice.

Several experimental data for simple geometry and steady flow through
stationary orifice are available [6]. Theoretically calculated orifice
discharge coefficient for small Reynolds number with stationary orifice
are also available [7]. However, neither experimental data nor theoreti-
cal prediction of the orifice coefficient are available for the moving
orifice in unsteady flow with large Reynolds number such as in recoil
mechanisms.

The aim of this project is to provide the fundamental description
of fluid mechanics for recoil mechanisms and to present an approximate
determination of orifice coefficient and to describe the fluid motion

in the recoil mechanism.
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II. ONE DIMEMSIONAL ANALYSIS OF ORIFICE
AREA AND ORIFICE DISCHARGE COEFFICIENT

A
)

SRR RS
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In order to examine how the fluid flow in the record mechanism affect
the record motion and how the orifice area is designed, a one dimensional

enalysis of fluid motion in the record mechanism i3 presented here.

iI~1. Criterion of Orifice Design

A recoil mechanism may be designed to operate on incompressible or

R e e T S e i o S

compressible principle. For incompressible type, the total volume of the

ey

recoil cylinder will remain the same during recoil motion since the fluid
is treated .3 incompressible. For the compressible type, the volume may
2 decrezsed in the recoil motion. The fluid used in the recoil mechanisms
may be gas or liquid such as air, nitrogen, hydraulic or silicone oil.

In both cases, the orifice must be properly designed to achieve desired

characteristics of retarding force for recoil mechanism.

e L

Before one calculates the fluid motion and the pressure distribution

o
il

in a recoil mechanism, design characteristics of recoil mechanisms should

S

A

Al

be first defined so that the required geometry of the orifice can be
B determined accordingly.

Generally, all recoll mechanisms work on some combination of the

A R S A

same basic principles; that of providing a controlled resistance over a

Al

set distcuce to check the motion of the recoiling parts, then returning

i

s

them to the firing position and providing a sufficient restraint to hold

i

a5 them in that position at a given elevation. A basic requirement for a i;
%%g recoil mechanism is that the resistance to recoil should be nearly con- <
%%' - stant for a srescribed recoil distance, since this will produce the
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smallest possible force on the gun structure. A typical recoll force
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versus recoil distance relation is given in Fig. 1. The area under the

recoil force-time curve represents recoil impulse to be dissipated by the
recoil mechanism. Clearly, a rectaongular curve will yield the lowest
retarding force for a given recoil motion. However, a rectangular curve
is not applicable at the beginning because the recoil resistance K(t)
ﬁhould not exceed the recoil force B(t) created by the propellant gas.

The total resistance force K(t) is a combination of a hydraulic
force Fo(t), a spring force if a spring is used with fluid and friction
of moviny mechanism. Whichever the type of recoil mechanism is used,
this force works as a unit.

In general, the recoil force B(t) is offset largely by the hydraulic
resistance F,(t) offered by throttling the fluid through the controlling
orifice and by the spring force. Thus, design of the control orifice is
a vital part of the recoil mechanisms.

We now consider a basic recoil mechanism as shown in Fig. 2 that a
recoiling mass M is subjected to a time dependent recoil force, B(t),
from the discharge in the breech of a gun creating an acceleration of X
in the x direction. Here X = 0 is taken as the orifice plane before the
recoil motion. The recoil motion of mass M forces the fluid to flow from
Chamber (1) to Chamber (2), The orifice installed between the two
chambers restricts the flow from Chamber (1) to (2) so as to create a
pressure difference between the two chambers. This differential pressure
acts on the wall of recoiling orifice Aj and Ay to contrel the recoiling
speed and motion. The force balance for the recoil motion can be written

as

e M)
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Figure 1. Recoil Force and Ketarding Force
of Recoil Mechanisms
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MX = B(t) - K(t) + M g 8in 6

(2-1)

K(t) = JA PldAl - JAZ Pszz +F = Fo(t) +F

1 f

where Pl and P2 are respectively the pressure distributed on the orifice
surface facing Chamber (1) and Chamber (2). A1 and A2 are area of the
orifice facing Chambers (1) a.d (2). Here Al = A2 is for incompressible
type and A1 > A2 for compressible type. Ff is tb- £frictional resistance
force from seal, various moving parts and, if any, recuperator.' The
last term »f Eq. (2-1) is the contribution of the gravitational force
with 6 being the inclined angle of the recoil mechanism with respect to
horizontal plane. The dot on X denotes the time derivative. 1In Eq.
(2-1), the mass M, the retarding force from breech B(t), two areas A1 and
A2 and frictional resistance force, Ff, are assumed known but distribution
of pressures P1 and P2 acting on the surface Al and Az are unknown and must
be solved associated with the fluid motion induced by the motion of re-
coiling parts. In general, both P1 and P2 must be integrated from the
pressure distribution respectively on their surfaces A1 and A2'
Now the pressure distribution on the orifice surface and their time
variations must be determined by solving the fluid motion in the recoil
fluid chambers. This creates the coupling between the recoiling force
and the fluid motion. It should also be pointed out here that the de-
signer has very iittle control over the resistance force, Ff, from the

friction and recuperator and the gravitational force, M , but he can con-

trol the resistance offered by the pressure force from the two chambers

by properly designing the orifice such that the total resistance to the

b e AR ot S A R A S s s Mt s e Mo At o R R A AR B P N M R LS Rt

A
IV IPIRCLERTPI0



e SRR
RS

b3

TR TR e R

e i

by

|
:
TS TR e e sy

i

A

P e R R T A I

«W%ﬁ‘%m‘ UK

.

recoil force is sufficient to arrest the rearward motion of the gun in a
specific recoil length allowed in the design.

One is now faced with the question of what orifice design will pro-
vide the lowest peak resistance force for a given mechanism. To set up
the criterion for the orifice design, let us consider Eq. (2-1) for
recoil motion again. K(t) is the total resistance force including fric-
tional forces Ff and pressure forces F, created from the fluid throttling
through the orifice. As the design characteristic of recoil mechanisms
required that the total resistance K(t) to recoil should be nearly con-
stant for a prescribed recoil length, a trapezoidal shape for K(t) such
as in Fig. 1 is normally adopted.

Since Eq. (2-1) is a second order ordinary differential equacion,
one needs two initial conditions to obtain a unique solution. These two
may be taken as

t=20 X=0 (2-2)

t=0 X=0 (2-3)

That is initially the recoil mechanism is at rest. However, if the
total resistance K(t) is not specified, there will be infinite many
solutions of X(t) to Egqs. (2-1), (2-2) and (2-3). To determine K(t), we
need additional design constraints. They are:
(1) the velocity of recoil i is zero at the end of the recoil,
t= tr, or

t=t, X(t,) = 0 (2-4)
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(2) the total length of recoil allowed is L, which must be ’

achieved in a duration of tr’ or

t=t X(tr) = L (2-5)
While the recoil length may normally be specified, the time duration,
t.» to arrest the rearward motion of the recoil is dictated by tﬁe re-
sistance force K(t) and is not known normally a priori. Indeed, tr must
be solved with K(t) together. To determine the function K(t) we reason
as follows

First, ac the beginning of recoil, t = 0, and at the end of recoil,
t = tr, the mechanism is at rest and zero acceleration X = } = 0 and

meantime the breech force is zero or B(0) = B(tr) = 0. We thus require

from Eq. (2-1)

il

Kl K(0) = Mg sin § (2-6)

K2 K(tr) = Mg sin 8 (2-7)

Here K1 and K2 are the resistance at the beginning and at the end of

recoil motion.

Secondly, integrating Eq. (2-2) twice and with the initial conditions

(2-3) and (2-4), we obtain

t t

MX = J B(t) dt - J K(t) dt + Mg sin 0 t (2-8)
0 0
t t t t 2

MX = J J B(t)drdt - J J K{t)dtdt + Mg sin 0 32— (2-9)
0 ‘0 0’0

Now with additional design constraints (2-4) and (2-5), Eqs. (2-8) and

(2-9) become

Lyday traa e
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0= J B(t)dt - I K(t)dt + Mg 8in 6 t, (2-10) 1
0 0 :
and §
ML = J J B(t)drdt - J I K(t)dtdt + Mg sin 6 — (2-11) :§
o ‘o o ‘o 2 .
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el

e

Integral Eqs. (2-10) and (2-11) thus provide us with a means of determining
the recoil time duration t, and the total resistance force K(t). Since
the total resistance force K(t) is generally desired to be of trape-

zoidal shape as shown in Fig. 1, if the initial and final periods, ty

RS NIS S G A

i
JERE

and tys of the variable resistance force are specified then Eqs. (2-10)
and (2-11) determine uniquely the time t, and the maximum total resistance

for Kmax'

Tl

R e i R N e P I W Ve

Either the moment area method or a trial-and-error procedure, as
discussed by Arora and Haug [1) and Coberly [2], may be used to solve
Eqs. (2-10) and (2-11). Readers are referred to the above references
for more details. The total resistance function K(t) thus can be used

as the criterion of orifice design.

LY

When the total resistanc. function K(t) is determined one may sub-

- '
3 %g stitute the K(t) function into Egs. (2-8) and (2-9) to obtain the receil i%
§ velocity X(t) and the recoil displacement X(t) as a function of time. {
ks §§ The recoil velocity and displacement in turn become the boundary con- %

ditions for the solution of fluid flow in the recoil mechanism. For tne

recoil mechanism shown in Fig. 2, the orifice now must move with

X velocity in the recoiling phase.

. The fluid throttling through the orifice must produce a resistance

-~ ek,
; )
GO Pt g T
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3 force such that when combined with other frictional resistance from
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seals and other rubbing parts, Ff, it is equal to the desired total
resistance force, K(t). It is a difficult task for a designer to design
such an orifice, since he must solve or know how the pressure force is
generated when the fluid is throttling through the orifice. What is
more difficult, the orifice clearance area in general is variable at ;
different locations; the flow is unsteady and may be in both laminar and

turbulent regions. 3

II-2. Quasi-Steady One-Dimensional Solution

4
&

A b

The fluid motion and the pressure distribution on the orifice

5

b
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surface are governed by the mass conservation equation, the equation of

state, the Navier-Stokes equation and energy equation ror unsteady

PV SRPRERTIP Ao

compressible fluid. In principle, the continuity equation, momentum
equation, equation of state and energy equation - total of six equations -~
provide the solution of pressure, density, temperature and three velocity

components. These equations, however, are coupled with Eq. (2-1) through

the moving boundary condition of X(t). Thus, the fluid motion must be

solved with the piston moving at a speed of i(t).

e A SR Ao

1 A

The initial condition for the flow problem may be assumed to be at
rest. Thus, the velocity is zero everywhere. The initial density and

pressure in the recoil mechanism is uniform.

After the gun is fired, the boundary condition for the fluid motion i
required that the fluid on the recoil rod assumes the recoil velocity
R(L) and is at rest on the stationary cylinder surface. Now the orifice
cross section must be designed so that the pressure forces, Fo, created

by the throttling of fluid between the two chambers plus other resistance
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seals and other rubbing parts, Ff, it is equal to the desired total
resistance force, K(t). It is a difficult task for a designer to design
such an orifice, since he must solve or know how the pressure force is
generated when the fluid is throttling through the orifice. What is

more difficult, the orifice clearance area in general is variable at

different locations; the flow is unsteady and may be in both laminar and

turbulent regions.

II-2. Quasi-Steady One-Dimensional Solution

The £luid motion and the pressure distribution on the orifice
surface are governed by the mass conservation equation, the equation of
state, the Navier-Stokes equation and energy equation for unsteady
compressible fluid. In principle, the continuity equation, momentum
ecuation, equation of state and energy equation - total of six equations -
provide the solution of pressure, density, temperature and three velocity
components. These equations, however, are coupled with Eq. (2-1) through
the moving boundary condition of X(t). Thus, the fluid motion must be
solved with the piston moving at a speed of i(t).

The initial condition for the flow problem may be assuned to be at
rest. Thus, the velocity is zero everywhere. The initial demsity and
pressure in the recoil mechanism is uniform.

After the gun is fired, the boundary condition for the fluid motion
required that the fluid on the recoil rod assumes the recoil velocity
i(l) and is at rest on the stationary eylinder surface. Now the orifice
¢cross section must be designed so that the pressure forces, Fo’ created

by the throttling of fluid between the two chambers plus other resistance
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Forces, Ff, is equal to the required design characteristic of the total
resistance force K(t). At present, no such general solution of fluid
motion exists even for the simplest recoil mechanism.

We consider a simple fluid dynamic model for the recoil mechanism.
This model in many applications does not provide an accurate description
of the flow pattern in the recoil mechanism, but it provides the first
approximate design of the control orifice. This method also provides a
basis for further modifications in cases of complex geometries and com-
pressible flow and the flow is one dimensiowal. The assumption of a
quasi-steady flow is equivalent to the assumption that the flow is in-
stantaneously steady and that the force due to the acceleration and
deceleration of fluid in the recoil is negligible. The one dimensional
assumption implies that the pressure is uniform in the radical section of
the mechanism. The resistance force offered by the orifice in Eq. (2-1)
thus may be written as

Fo(t) = K(t) - Ff = PlAl - P2A2

For incompressible type of recoil mechanisms, we have A, = A2 or

1

(Pl -P) = Fo(t)/A1 (2-12)

9)
The continuity equations for one-dimensional steady incompressible flow

is approximately (see Figure 2)
AOUo = (A1 + Ao)Ul (2-13)
Here A“ and A, are respectively the orifice clearance area and oriflce

surface area facing Chamber (1). Ul is the average velocity in Chamber

(1) relative to orifice velocity. From the boundary condition, we have

U, = X(t) (2-14)

1
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The momentum equation under quasi-steady, one-dimensional assumption may

be integrated from the Chamber (1) to the rear end of the orifice as

2 2
Y+P1e% 4 0+ o (2-15)
2 2
(Y p
Where AHf represents the loss of kinetic energy due to viscous friction

and, if the flow becomes turbulent, turbulent shear. There are six un-
knowns, Py, Py, P,, Uy, Uy, and Ay, in four Eqs. (2-12), (2-13), (2-14)

and (2-15). To facilitate the solution for orifice clearance area A,,

we assume that the pressure P2 on the rear orifice surface is approximately

equal to the pressure at the end of orifice P, or

P, =P (2-16)

The reason for adopting this approximation is as follows. As shown
in Fig. 2, the one-dimensional approximation is perhaps invalid immedi-
ately behind the orifice because from experiments conducted by Chen et
al. [7] as shown in Fig. 3, we recognized that the flow always separates
at the rear side of orifice except at the start of recoil motion. Therefore,
for one-dimensional assumption to remain valid at the end of orifice, the
flow should be considered 1ike a jet (see Fig. 3) and separates at the
rear end corner of the orifice. Under this condition, the pressure in jet
portion of the flow will remain approximately P,. Thus, for no other means
of determining :he pressure on the rear surface of orifice, P,, we equal
Py to B, on the same cross section which is the closest pressure available
under one-dimensional assumption.

Furthermore, the loss of kinetic energy due to friction, 0Hg, is

normally proportional to the pressure difference (P; - Pz)/p or

(2-17)

ARg ~ (Pl - Pz)/P
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Thus, combining Eqs. (13), (14), {(15), (16), the orifice velocity Uy

Neiie Vil

can be written as

' 2
A
(2] -
=Cp J 2(P; - Bp) [ |1 - K+ a P (2-18)

i ey

Here the orifice discharge coefficient CD is introduced to account

for the frictional loss and also to serve as a correction factor for the

Pl £ AR = 4T

assumptions made, namely, one-dimensional quasi~steady flow and the

Wyt

assumptions that lead to Eqs. (2-16) and (2~17). More discussions on

the coefficient C_ are given in Section IV.

D
Now from Egqs. (2-13) and (2-14) we also have

* U .
A, = A /(—)—(‘1 - 1) (2-19)

We thus can solve the orifice clearance area Ab from Eqs. (2-18), (2-19)

and (2-12) as

(Pl - P2)2

+1 -
o l1-1

Nl o o
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Equation (2-20) thus provides an approximate way of predicting the ori-

,
i

fice clearance area for recoil mechanisms. It should be noted that the

orifice area Ao is a function of orifice surface area Al’ recoiling

speed i, fluid density, p, orifice discharge coefficient, CD’ and the

resistant force Fo(t) required from the criterion established for the

orifice design. Since both Fo(t) and X are time dependent and the

# ST SRR N LETHI™ RAPAD

orifice moves with i, the orifice area A.o must in general vary with the

Leefag

: recoil distance X. The orifice area A, can now be predicted if the

3 orifice discharge coefficient CD is known.

II-3. Orifice Discharge Coefficient Cp

A i e

The orifice discharge coefficient CD was originally introduced

to account for the pressure loss in a steady flow through an orifice.

Customarily, it is treated as a constant. However, in case of recoil
mechanisms Cp certainly is not a constant for the fcllowing reasons.
First the recoil rod starts with zero speed and is accelerated to a high
speed flow. Then it decelerates to zero speed and reverses the direction
of motion in the counter-recoil motion. In the process, the flow starts
from laminar motion to turbulent flow and then back to laminar motion
again. The Reynolds number based on upstream gap and instantaneous
average velocity may vary from zero to an order of 104, The orifice
discharge coefficient certainly should vary since Reynolds number variles
over such a wide range. 1In addition, in order to create a desirsable
characteristic of the recoil motion, the orifice clearance area Aj mast

be designed to vary. In summary, the orifice coefficient CD should be

dependent of:
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A. Gecmetry of orifice and shape of Chambers (1) and (2).
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Time variable,

3l d Ay

C. Laminar and turbulent phenomens.

The average velocity across the orifice and viscosity and

St
o
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linear dimensions of orifice, or the Reynolds number.

E. Fluid compressibility.

i e ik

The precise value cf orifice discharge coefficient CD for recoil

mechanisms is not available to date since design of an orifice varys

from one gun to another. Even for the same weapon, if a different
charge is used, the orifice coefficient will be different because dif-
ferenc recoil forces produce different recoiling speeds. Although as a
rough approximation, constant values of CD’ between 0.7 ~ 0.9, had been

used [3, 4] but the resulting resistance forces were not satisfactory.

A L ATt AP PG ey

In addition, the resistance force generated by the recoil mechanism was
shown by Nerdahl and Frantz [5] and Coberly and Frantz [6] to be sensi-
tive to the change of the value of orifice discharge coefficient.
Therefore, a variable orifice discharge coefficient should be used when~
ever the variable value of CD is available. To date neither experimental

correlation nor theoretical prediction for variable CD is yet available.

Chen and Macagno [7] are currently attempting to solve the detail of

fluid motion and thereby to predict the value of CD from the numerically
prediction pressure distribution. While the progress is being made, we
suggest the following temporary measure. To determine the variable

ovifice discharge coefficient, we propose that the value of variable
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orifice discharge coefficient at any instance during the recoil be the

value for steady flow with the flow Reynolds number , UD/V, corresponding
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to the instapntaneous Reynolds number ¥D/v. Here D is the apstream
characteristic length, the diameter in case of tube flow and the gap
width in case of annular flow. U is the average velocity upstream of
the orifice. This assumption is consistant with the quasi-steady
assumption made in deriving Eq. (2-21).

Figure 4 shows the experimental correlation [8] of the orifice dis-
charge coefficient, CD’ versus steady flow Reynolds number UD/v as
defined by Eq. (2-18). 1In this case Ao is the orifice hole area md%/4
and (A1 + Ab) is the upstream area or ﬂD2/4. Although the geometry of
orifice in Fig. 4 differs from the one in Fig. 2 for recoil mechanisms,
Fig. 4 does illustrate the qualitative variation of orifice discharge
coefficient with Reynolds number as well as the geometry. In Fig. 4,
L is the thickness of the orifice. The ratio L/D seems to have an
apprecigble effect on CD value. For a given Reynolds number CD value
in general increases with L/D ratio except at a large Reynolds number
over 103.

The flow over Reynolds number of 103 is likely to be turbulent in
some reglion of the flow. Turbulence is likely to be present near both
orifice front and rear extruding corners and behind the orifice. The
flow near the orifice is very complicated. The flow may separate at
the front corner and reattach and then separate at the rear corner
again. Even when the upstream slow is steady, the separation phenomena
may still be unsteady. That is, the separation bubble may grow to a
certain size and then separate from the corner and is carried downstream.
A new separation bubble may follow to form at the front cormer again

and the phenomenon repeats to give a definite periodic separation. The
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above mentioned phenomenon was observed by Chen and Macagno [7] in simu-~
lation of recoil motion with a similar configuration as shown in Fig. 3
at Reynolds number of 3752 based on upstream gap and velocity.

Examini.g Fig. 4, we may conclude that the orifice discharge
coefficient CD is less gsensitive tu the ratio of d/D in the range 0.04
to 0.25 than to the ratio of L/D. This has a favorable implication
that the CD is less dependent on the variable orifice clearance area
A.o required in recoil mechanisms since the ratio Ab/(Ab + A) is similar
to (d/D')2 in Fig. 4. This implication will lessen the complication in
determining CD for recoil mechanism. The wvariable orifice coefficiant
CD to be used in recoil mechanism is then a strong function of
ingtantaneous Reynolds number and the ratio of orifice thickness to
the upstream gap or L/D.

When the fluid is compressible, the orifice coefficient should
be modified. This is discussed also in the report by Chen and Macagno
[71.

In summary, if the resistance force offered by recoil mechanism is
defined, for example, a trapezoidal function in time, then a criterion
for orifice design may be reduced from the equation of motion for recoil
mechanism. The orifice clearance area Ao may then be approximately

predicted from the quasi-steady one dimensional analysis for incompres-

sible flow. However, the orifice discharge coefficient, CD’ must be pro~
vided from experimental correlation. Since the orifice area, Ao, in general
varies with recoil distance, a variable orifice discharge coefficient, CD’
is proposed and, as a temporary measure, is taken as that of the steady

flow with the instantaneous Reynolds number XD/y replacing the steady

Reynolds number.
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For future design of recoil mechanism, unsteady two dimensional

ot

analysis of flow motion is proposed so that detail and precise pressure
distribution on both sides of the orifice surface may be predicted.
Such an analysis may be made quite versatile in that orifice geometry,

recoil speed and distance can all be made as input parameters.
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III. SIMULATION OF FLUID DYNAMIC CHARACTERISTICS IN RECORD MECHANISM

In this section, we are concerned with the simulation of the fluid
dynamics of recoil mechanisms so that the orifice discharge coefficient,
the recoil motion and force may be properly predicted. In the simulation
experiment, it may also be possible to study the flow patterns, and other
informations which are helpful in understanding the dynamics of recoil
systems. The possibility of using different media and materials in the
simulation is examined. The design configuration is made for compres-
sible fluid recoil mechanism, however, the design procedure may be
applied to conventional recoil mechanisms. The immediate goal of the
design is to obtaln experimentally the orifice discharge coefficient.

In the design, calculation of the discharge coefficient is accomplished
through the measurement of forces that are imparted to the stationary

and moving parts of the recoil mechanism, and the measurement of £luid
pressure in the recoil mechanism. The simulation may be also used for

comparison with the numerical predictions.

IIT-1. Simulation Analysis

The purpose of a recoil mechanism is to provide a retarding force
acting on the recoiling parts of the gun in order to control the motion
induced by firing the charge. Two types of recoil mechanisms for large
caliber weapons are in use: (A) compressible fluid (hydropneumatic)
type, and (B) spring-fluid (gas or liquid) type. The detailed descrip-
tion of recoil mechanisms are available in [9] and {10]. In the present

simulation design, a single orifice, hydropneumatic witliout spring is

considered. Figure (5) is a schematic sketch of such a recoil mechanism.
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In order to conduct a simulation experiment, the similarity para-

meters of recoil mechanism must be simulated. To achieve this, let us

describe the similarity parameters by examining fluid flow and piston

motion. The fluid and piston motions are governed separately by two

different momentum equations. The two equations are not independent.

They are coupled through the boundary conditions and pressure distri-
bution on the wall surface. Therefore, in the simulation analysis,
both fluid and solid momentum equations must be examined in addition to
geometrical similarity. We examine these similarities in detail.

(A) Geometry Simulation: The geometric simulation can be carried
out by taking the ratio of all corresponding lengths of prototype and
simuiated model equal to an arbitrary constant. Three dimensionless
geometric parameters are considered necessary for simulation. They are

the ratio of orifice gaps to the piston flange, §/H (see Fig. 5), the

width of the orifice to the piston flange (d/H), and the ratio of piston

flange to the piston radius (H/Rz) or:

= 6/H, N

G2 = d/4, N

No1 o3 = B/Ry

(B) Fluid Dynamic Simulation: The fluid dynamic simulation of un-
steady flows require two dimensionless similarity parameters which must
be kept the same for both prototype and simulation design. These two
similarity parameters are Reynolds number and Strouhal number. The
definition of Reynolds and Strouhal number is obtained from the govern-
ing equation for the fluid flowing through the orifice. The Navier-

Stokes equation for an unsteady, axisymmetric, laminar flow with constant

physical properties and negligible body force is:
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where V and R2 are the maximum piston velocity (reference velocity) and
the cylinder inner radius as shown in Figure 5 (reference_length), t*

denotes time, z* and r* axial and radial coordinates, vg and v¥ axial

¥

and radial components of velocity, and p*, p* and v denote density,

o FEEERVAS O PR N MR A

'

pressure, and kinematic viscosity, respectively. T is the reference

BRI

time and can be taken as the period of the recoil motion. NS and Re are

Strouhal and Reynolds numbers, respectively or:

VR R2
1 . Re = ~ and NS =37 (3-2)

Re and NS are the two similarity parameters to be simulated in the

TR
»

design analysis.
(C) Piston's Motion Simulation: In order to have a complete

rimulation between the prototype and simulation model, it is obvious the

similar piston's motions is needed for both cases. This is to say that
the piston's displacement profile must be the same for the prototype as

well as the simulation model. The governing equation for the motion of

T s A

the piston is the Newton's second law, which can be written as:
*
i L (3-3)
m 3t (ty -~ F(O

*
A

3 Pl i

* *
where B(t) and F(t) denote the breech and retarding forces on the piston,

respectively, and m is the recoil mass. v; is the piston velocity and

20 s Wi G A G 5 T b N vw.mwtwm'fmwwwfﬂﬁmu‘ Sv‘h"’ 3
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t* is time. Equation (3-3) may be made dimensionless with the following

expressions:




is the key equation for coupling fluid motion and piston motion. The §

value of the breech force B can be obtained from the recoil force that is §

z
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7 E where B and F are the maximum breech force and the maximum retarding i
P E force. Introducing the above expressions into (3-3) 5
1 E av,
% = N B'- - N '
i T T € T R (3-4)
| % The dimensionless parameters Ny = g%-and N = §%- must be the same for
§ the simulation design to achieve the desired simulation. To facilitate
<
%
: E the calculation of NF and NB’ F will be calculated from the following
i g equation:
= % F = Ap X A (3"5)
; ] where Ap is the pressure difference on the two sides of the piston and
; % A is the piston flange area. It should be remarked that equation (3-5)
%

generated by the propellant used in a particular recoil mechanism. :
The goal of simulation experiment is to provide information about ;

the fluid dynamic characteristics of recoil mechanisms, in particular

A S R b Sk A e R Bt

the orifice discharge coefficient. To determine the orifice discharge

coefficient in the simulation experiment, one may measure the force, §
F, that is on the recoil system stand and the recoil piston motion y é%
during the experiment. Through equation (3-5) the force measurement ; §
provides the amount of pressure exerted on the walls of the cylinder é
which in turn will be used to determine the orifice discharge coefficient §
CD. The determination of the orifice discharge coefficient CD’ may be ;
derived as follows: The momentum equation (3-2) with one dimensional

j
{

approximation may be integrated along the stream line to give an
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approximate formula as shown in Eq. (3-6) where AH is the energy loss

due to viscous effect.

.‘ﬁ..{..P.'_gyz_gB-AH (3'6) )
28, P 28 p

In equation (3-6) the flow is assumed to be quasi-steady and the coordi-

nate system is fixed on the cylinder. p is the density of fluid and 8,

is gravitational constant. p' and p are the averaged pressures down-

Lk R N St e 080

stream and upstream of the orifice, respectively. v and v' are the
velocities at the upstream location and at the orifice, respectively.
From continuity equation for the incompressible £luid, we have

Av = A'v!' (3-7) :
where A and A' are the piston flange area and the orifice area, respec-
tively. Combining equations (3-6) and (3-7), one obtains the fluid

velocity at orifice area as:

v! = CD /AP(ZSC) (3-8)

p
where CD is introduced to account for the energy loss, unsteady flow and
one dimensional approximation. The variables Ap, v', CD and A' may be
considered to ary with respect to time in the recoil system. From
equations (3-8) and (3-7), it is obvious that if v, v', Ap, A and A'
are known CD may be calculated. For a simulation experiment A and A'
are given. The fluid velocity at the orifice v' can be obtained from
the measurement of piston velocity V through equation (3-17). The

determination of the pressure difference Ap may be achieved by measuring

the retarding force F on the cylinder with equation (3-5). The force F

RS s omt v
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can be measured such as by a strain gauge type of instrumentation with

an experimental arrangement shown in Fig. (6).

The piston velocity can

be measured also during the experiment by displacement transducer. The

force F can be obtained as follows: Suppose that the hydraulic fluid of

the simulation model is evacuated such that inside the recoil system

there is vacuum (or just air). Then the recoil motion of the piston

will be met by only the frictional force from the seals of the outer

cylinder and may be recorded as curve (a) in Fig. (7). Now, with the

simulated hydraulic fluid filling the recoil mechanism, the recoil motion

will be retarded by the additional force F = Ap,A. This force F may

then be obtained by subtracting the frictional force (curve a) from the

force received by the external cylinder of curve (b) on Fig. (7). The

difference between curve {a) and (b) is due to the force exerted by

fluid on the orifice and hence the recoil mass.

Once F is found, Ap

can be calculated and, using equation (3-8), CD can be plotted versus

time.

IT1I-2. Simulation Design

As stated previously, the present design of simulation experiment is

for determination of orifice discharge coefficients in recoil mechanisms.

In order to simulate the fluid flow in the recoil mechanism, the shape

of the geometry and the geometrical ratios N, = 5/4, Nop = d/H, Ne3 =

H/R, Strouhal number N, and Reynolds number, Re, must be simulated for

S

both the prototype and the simulation model.

recoil motion, the parameters NF and N

B

In order to simulate the

must also be simulated for the

prototype and the simulation design. Based on available date [10] NS’

Re, NF and NB can be calculated for the prototype. One of the simulation
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consideration is that the mass of the recoil piston in the simulation
experiment should be reasonable. Another consideration is that the
time duration of the experiment should be reasonably long to permit

accurate measurements. Table 1 shows the properties of water and Dow

Corning 210-10 centistoke silicone fluid. Table 2 shows the properties
of "clear lucite" which can be used for the cylinder in the simulation.
Clear lucite is a material strong enough to withstand the simulated
stresses, It is transparent, allowing observation of fluid motion during
the experiment.

In order to achieve the simulation, we choose the simulation fluid

5

to be water which has a smaller kinematic viscosity (1.06 x 10~ ftzlsec)

4

than the hydraulic oil(typically 10 ftzlsec). The smaller the fluid

G R e R R

G

kinematic viscosity is, the smaller the simulated piston veloc.ty is

i
i

required to achieve the same Reynolds number VRZ. This is good because

v
it leads to a longer observation time for the simulation than that would

be in the real recoil motion.

Ccasideration of using water provides many advantages in the simu-

At R stk

lation. In the following, we examine the use of water as the simulation

fluid instead of the Dow Corning oil. Table 3 shows different parameters

and symbols with their definition. These values are taken from [10] the

M S L AR A g G KA

recoil mechanism used in the simulation analysis. In the complete simu-

lation, all geometry ratios N

o1 = 8§/, N, = d/H and NG

o2 = H/R2 must be

3

k pt similar., We now need to simulate geometric similarity NGl’ NGZ’ NG3’

fluid flow similarity, N_.,, Re and recoil similarity NF and NB' Table 4

S’

i

i

1

gives the characteristic value of various simulation (see Fig. 5) where %

ikt A

fh o




T

eI TR

Dy MR IEAR SV A A
Ty §

o G U HAUTONDTS SN ot
i P taervin

T T T T L L e R
TRt g >

¥

: T
ARty
; i, P
EP— o 50T P DRYAPR “ﬁ%g’m‘ TR P T A M PRGsS

AP 4

I L e e

TABLE 1. PROPERTIES OF FLUIDS

Dow Corning Silicone Fluid 210-10

Specific gravity
Density (at STP)

Coefficient of Thermal Expansion

Viscosity

Power Point at St d Pressure
Flash Point at St ¢ Pressure
Specific Heat at 77°F
Boiling point at 0.5 mm Hg.

Water

Specific gravity
Density (at STP)

Coefficient of Thermal Expansion

Viscosity
Specific Heat at 77°F

0.94 3
0.03396 1bm/in
0.006 in/m/°F at STd P.
10 centistoke

-85°F

325°F

0.4 Bt/1lbm °F

Absolute Pressure + 392°F

1 3
0.036 1lbm/in
0.148 1/°R

.42 Centipoise
0.99 Btu/lbm °F

TABLE 2. PROPERTIES OF CLEAR LUCITE

Specific Gravity
Tensile Strength
Flexural Strength
Compressive Strength
Modulus of Elasticity

Coefficient of Thermal Expansions

Refractive Index

1.19

10500 (psi)
16000 (psi)
18000 (psi)
45000 (psi)
0.00005 (in/in°F)
1.49
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TABLE 3. LIST OF SIMULATION VALUES

Symbol

R2 = Cylinder inner radius

v = Kinematic viscosity

v = Piston velocity

v' = Fluid velocity at orifice

A = Piston flange area

A' = Orifice area

T

m

&c

[i§

Period of a cycle
recoil mass

density

= gravity acceleration

Retarding force

Breech force

= Strouhal number (RZ/VT)

Reynolds number (sz/v)
Ft/mv
Piston outer diameter
Orifice opening
Flange Height
Flange thickness

Cylinder length

7 in

197 = 10-4 ft2/sec
33.33 ft/sec
558.735 ft/sec
57.005 in’

4 in2

0.05 sec

2855 1bm

0.03396 1bm/in>
32.2 1b.ft/1b. sec’

391271.15 1b

0.35
3046063
0.1935
10.25 in
0.09 in
1.775 in
1 in

18 in
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K = 0.357 means that the simulated size is only 35.7% of the prototype

size.

2

&

The reason for considering full scale simulation is that the proto-

R

type may be obtained from the existing recoil mechanism in use without

the need of constructing a new simulating model. The use of the same
hydraulic fluid in the simulation means that the simulation is identical

to the full scale firing of a weapon which is difficult to perform in

A TR SRR A IR ﬁ%ﬁw&%‘ﬁz%‘%

T e L ILCY

the laboratory. On the other hand, if simulation with actual size but

i g with water as media is considered, velocity is one-tenth of the actual E
i :% speed and the time scale is 10 times larger for the simulation and the %
% 3 3
é‘ i sinulated recoil force (B)s is reduced ti ibe-hundredth of the real recoil g
;' % force (B)p. The simulated mass remains the same as that of the prototype.

2 g Therefore, the full size simulation with water as hydraulic oil offers

advantages of (1) slower simulation velocity, (2) longer simulation time
and (3) smaller simulated recoil force. If the full size simulation is
still undesirable because of its dimension or of its large mass, the

simulation with reduced size is calculated and tabulated in Table 4.
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IV. TWO DIMENSIONAL FLOW IN RECOIL MECHANISMS --
A FINITE DIFFERENTIAL METHOD

IV-1. The Finite Differential (FT) Method

In the 1978 annual report [10] of the project and a subsequent
report [11], the finite difference solution of unsteady flow in a recoil
mechanism was given for a Reynolds number of 3470. Here the Reynolds
number was defined with the maximum velocity of the recoil motion and
the gap between the cylinder and the recoil rod. The result showed that
the finite difference solution with a grid size of (20 x 50) at Reynolds
number of 5 is stable but the solution is unstable at the Reynolds number
of 3470 and needs a scheme that averages the vorticity solution to
stabilize the numerical result. The numerical solution thus only
qualitatively agrees with the experimental visualization of the stream-
line pattern in the upper chamber (the high pressure side) of the recoil
mechanism. Further survey of finite difference methods found that the
finite difference solution of the Navier~Stokes equation is quite unstable
at the high Reynolds number unless the grid size is greatly reduced.
Approximately, the grid size Ax required for a stable solution is pro-
portional to the inverse of the Reynolds number. The increase in the
number of grids at high Reynolds number requires considerably large
computer storage and computational time. Even so, most of finite dif-
ference methods show considerable instability if the right combination
of parameters such as the time step, the relaxation factor and the method
of solving simultaneous equation were not adopted. This difficulty also
persists in many simpler flow configurations such as a transient or a

steady flow in a square cavity. For this reason, a new numerical method
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called the finite differential (FT) method was conceived and developed.
The finite differential (FT) method is not the finite difference (FC)
method, nor the finite element (FE) method. The basic principle of the
finite differential (FT) method is outlined here and then the finite
differential (FT) solution for the flow in the square cavity is demon-
strated. A better convergence and stability of the numerical solutions

are obtained from the finite differential (FT) method.

IV-2., The Principle of Finite Differential (FT) Method

The basic idea of the FT method is the incorporation of local
analyti- solutions in the numerical solution of partial differential
equation (PDE). The FT method starts with subdivision of the total flow
region, D, into small subregions as shown in Figure 8 in which the
governing partial differential equation (PDE) may be solved analytically.
The assembly of all the local analytic solutions thus constitutes the
numerical solution of the problem. Details of the FT method are outlined
below.

Consider a partial differential equation, (PDE) with a inhomogeneous
term G, L(¢) = G, where L can be any partial differential operator,
linear or nonlinear. This PDE is to be solved in a region D, see Figure
1. Depending on the operator L, let the boundary conditions and/or
initial conditions be specified so that the problem is well posed. A
numerical solution is sought when the problem cannot be solved analytically.
In order to solve the problem with the finite differential method, the

complex geometry of the problem is broken up into a number of subregions

e T T e BN




b
4
St AT B

where analytic solutions can be obtained. Let the region D be subdivided
into small rectangles by passing orthogonal lines through the region.

The intersection of these lines forms the nodal points with I = 1,2,3,...,
i-1, 4, 1 +1,..., IN, and J = 1,2,3,..., J-1, j, J + 1,...,JN. A typical
subregion of the problem with the node point P(i, j) may be surrounded by
the neighboring node points E (east), W (west), S (south), N (north), NE

(northeast), NW (northwest), SE (southeast) and SW (southwest), which

corresponds to points (1 + 1, J), (i -1, j), (4, 3 -1), (4, j +1),
1+1,j+1), 4-1,3j+1), A+1,j~-1)and (1 -1, j - 1), res-

actively.

L g R A

Once the region D has been subdivided into simple rectangular sub-

e W

regions, an analytic solution in the single subregion may be obtained.

In the case when the PDE is nonlinear, the nonlinear equation may be

LI A

locally linearized in the simple region. However, the overall nonlinear
effect can still be preserved by the assembly of local analytic solutions
which constitute the numerical solution of the PDE over the whole regioa
D. Indeed, the locel linearization technique is also used both in the

FC and the FE methods.

The problem has now been reduced into one with many finite regioms,
where analytic solutions can be obtained if the boundary and initial
conditions in each simple finite subregion are properly specified, thereby
making each simple subproblem well posed.

Let the governing equation in a simple subregion be L(¢) = G, where
L here denotes a linear partial differential operator so that an analytic
solution can be obtained for the subregion as a function of the boundary

conditions;
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L(¢$) =G

¢ = £(fg(x,t), fo(x,t), £.(y,t), £,(y,t), B, k, x, ¥, t, G)

where the fN,fS,fE and fw are prespectively the northern, southern,

eastern and western boundary conditions of the subregion. h is the dis-

tnce between the point P and the sides N and S. Similarly k is the respec-

tive distances between point P and the sides E and W. The boundary con-

ditions fN and fS of the element are functions of x, while fE and fw are

functions of y. The boundary functions f's (i.e., fN’fS’fE and fw) may
be approximately expressed in terms of the nodal values along the boundary

such as, f's = i(¢“,o--) where ¢n’ are the values of the dependent vari-

ables on each node points n, n being E, W, N, S, NE, NW, SE and SW in this

DS ) S
sianRRas IR bt R

particular case. Substituting the boundary conditions expressed by ¢y

into Eq. (4-2) and evaluating the relationship between the functional value

i pubid

at an interior point of the local subregion p and its surrounding points we

have

¢P = f(¢E,¢W’¢N’¢S’¢NE’¢NW’¢SE’¢SW"..) (4-3)

RSB b i s A A
i ot 3} Flgh B ol st B 4

which is the fundamental formula for the present FT method. For the

linear or locally linearized problem, the 9-point FT formula has the form,

¢ =C

b= Cpdp * C

wcbw + CN¢N + CS¢S + C

Ne®NE * CsebsE

(4-4)
+ Cotw + Coydoy + (6

where the coefficients C's are obtained from the local analytic solution.

S(G) is a part of the inhomogeneous solution. If the larger subregion
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shown by the dotted lines in Figure 1 is used, a more accurate 1l7-point
formula can be obtained. It should be remarked here that the finite
differential solution obtained in Eq. (4~4) in the interior of the subregion
is exact in the sense that it is obtained from an analytical solution to the
PDE in the finite subregion. The only approximation involved is from the
boundary conditions.

In an internal finite subregion of the total region D, the neighboring
points of ¢p such as ¢E’ ¢w, etc. are, 1n general, unknown. However,
they can be in turn expressed as an analytic function of their neighboring

points. This may be done repeatedly for all the unknown nodes (I,J) in

the total region D

4’1,3 = Ci+1,j ¢i+1,j + ci_l,j 4’1—1,;} + ... 4 fi’j(c) (4~5)
where ¢i,j is ¢p of a given subregion and other ¢'s in Eq. (4-5) are the
boundary values given in Eq. (4-4). The assembly of all the expressions
for all nodes points can then be expressed in a matrix form. The system
of algebraic equations can now be solved numerically as in the finite
difference method to give the numerical solution of the total problem.
This is the essence of the finite differential (FT) method.

There is an essential difference between the finite differential
(FT) method just described and the finite difference (FC) or finite
element (FE) methods. In the FC method, the relationship of ¢p to its
neighboring points is not obtained from the analytic solution of the
differential equation but, instead, from the difference formula truncated
from the Taylor series expansion of the dependent variable about its
neighboring points. On the other hand, the FE method assumes an approx-
imated functional form (shape function), normally some polynomial of lower

degree, say up to 5th or 6th degree, to represent the solution and uses

el el B A s R B
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the variational or Galerkin type of integration on the differential
equation to find the relation between ¢p and its neighboring points. It
should be remarked here that the derivatives of the solution from the

finite differential solution may be obtained by differentiating Eq. (4-1).

The resulting equation will provide the derivative at any given point in
the subregion without loss of accuracy due to differentiation.
IV-3. The Finite Differential Solution of Unsteady
Two-Dimensional Namier-Stoke Equation

The unsteady two-dimensional incompressible viscous flow can be
formulated with the stream function ¥ and the vorticity £, as a dependent
variable. The independent variables are two dimensionless space coordi-
nates (x,y) and the dimensionless time t. These independent variables
are normalized with a reference length L and a reference time scale L/U,
where U is the reference velocity. The Reynolds number thus is defined as
UL/v. v is the kinematic viscosity. In order that the stream function
satisfies the continuity equation, we have the velocity components in an

x and y direction, u and v, as
u=y v=-y . (4-6)
The scalar component of vorticity (z direction) £ can be defined as

E=v - u =, * i) (4=7)

Taking the curl operation of the momentum equation, we have the voriticy

transport equation

Et + ZAEx + ZB£y = Exx + Eyy (4-8)

T
R A R S A S D e e
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with
A= Re u/2 and Re v/2 .

With the appropriate boundary and initial condition equations (4-6), (4-7),
and (4-8) will provide the solutions to u, v, ¥ and §. The pressure
distribution P can be obtained from the integration of the Navier-Stokes
equation.

Since equation (4-8) is a nonlinear equation, the analytic solution

to the whole region of flow, either in a cavity or in a recoil mechanism

is not available. Therefore, the finite differential (FT) numerical
solution is one way to obtain an approximate solution. To implement the
FT method, the flow region D (see Fig. 4) is subdivided into many sub-
regions. In each region, equation (4-8) is linearized; that is, A and B
are assumed as known averaged values within the subregion. In each
subregion, the boundary conditions at the north, south, east and west

are denoted as wn’ws’we’ww’ and gn,gs,ge,gw. If the initial condition
for the vorticity £ is given, the problem in the subregion is well defined
and can be solved.

Details of the finite differential solution to the vorticity trans-—

port equation (4-8) and Poisson equation (4-7) are given respectively in %:
Appendices A and B. %E
The finite differential solution for the Poisson equation (4—75 is %1
given in Appendix B, equation (B-16) as ?é
T nn 5 ks gl

q;psnzl = (cg*+ ¢, + ) Sin T+ mzl ¢, Sin 5~ (4~9) 4
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Subregions of the Finite Differential Method
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The velocity components u and v may be obtained by differentiation of
the stream function ¢. Nine-point formulas for up and v_ are given by

equations (B-17) and (B~18) of Appendix B.

¥ AN
ST

o 100 TEAN 1 U 7 o DR ST et RO L i v AT S
2 LA L, 5 i

; The coefficients €93C;3Ces and ¢ are given in Appendix B. They con-
; tain the known vorticity in the subregion and the 8~nodal point boundary
ié § stream functions (i°e"¢ne’we’wse’%fwnw’wwwsw and ws). Equation (4-9) is
g‘ 3 thus reduced to the form given in equation (4-~4) or, more generally,
; equation (4-5) relating the central nodal value to the neighboring 8
% nodal values.
é The steady flow solution of the vorticity transport equation (4-8)

is solved to provide the FT 9-point formula for the vorticity at the center

e R LT TE PVt

of the subregion g: = E:(0,0) (see Appendix A, equation {i-_2};

8 s nm I my
Ep = Z (c1 + cz) Sin-7?-+ z (c3 + c4) Sin 5 (4-10)
n=1 m=1

Again, equation (4-10) may be written in the form given by equation (4-4)

and (4"5) .

AR S

IV-4. Numerical Calculation and Discuesion

In order to examine the accuracy and stability of the new Finite

Differential Method, the case of steady recoil motion without orifice is

oSl WS R T AR BB R 1 S
P b tharerens

PRI R

considered. This is the case similar to the steady state driven cavity
flow. The reason for selecting this flow is that there is an abundance
of similar works available for comparison.

To solve the steady flow without orifice as shown in Figure 9,

equations (4-6), (4-7) and (4-8) must be solved with the boundary conditions

< e RS a3
e e e e S




S A I R AR

ke diet il vaatinuc

m 1=
S = n Q@
% o oA
QO
= @ O
— M..u
2 — =
w .M\nOu . :
g & 5 3
&= .
<y} .
, |
=] i
w
ol R
8 -
[$] H I
AAAY N AN | N AN A AN 1////// i SO AN E B
N ' ! N N\ ! - .
N N N o m
N \ Mw | |
J U N o
N
N o N \ 9
\ = N \ M
\ N -
\ : / £ :
N\ S \ o =
J N N » 5
N \ i o
N > e
N N s &
N N ke
\ N ©
3 i N \ | >
N f N w
\ N N g
N N J N
N N \
\ \ N\
N\
NONNNNN\N SESERN NN SNONANNNAN . LY
7

0 Y gy O R o A TR A TR L wiz LAt e h L SR AR PRTEFEATWAL s §U20, ENE
A

T ; PR R o PP APNTTISew s L T
R T R TS A LT S A RS R A S N A e e L 8 L 8 AR AT e {

AT s e




i alt o <

- T i A T e ¥ T
B o e e R ST TR S (S TR =

x=0 and x =1 , u=v=0o0r =0 |, W/ax =0
y=0 s u=1, v=0or y=0 3y/ay = 1  (4-11)
y=1 s u=vs=0o0r y=0 |, /3y = 0

The finite differential solution of the problem is solved with the finite

3
-
e
3
P
!
¥,

differential 9-point formulas (4~9) and (4-10) for the stream function and

AR TR

vorticity function. Equations (B-17) and (B-~18) in Appendix B provide the

finite differential solutions to the velocity components u and v. The

numerical solution procedure is as follows:

(1) A guessed vorticity is made and the stream function is solved from

equation (4~9) with the boundary condition ¢ = 0 given in equation
(4"11) .

A T B N ) A e o SR AR T YRR

e e N RS RN

=
e

. (2) The velocity components u and v at each node are calculated from

equation (4-10) with the boundary condition (4-11).

(3) The vorticity function is then solved from equation (4-10) with the

AR R

boundary condition (4-11).

- ey A RS §
N

(4) The newly computed vorticity function is compared with the guessed

P S AE et S N B
i

SRS,
e Rror

ot i L i D
D\ o, sttt g i

or old vorticity given in Step 1. The solution converges if the
A difference is within the given convergence criterion. If not, tne
E é procedure is repeated from Step (1) using the newly calculated S
E : vorticity as the guessed value. %
;§~ g The above procedure is essentially an iterative scheme. In solving %
~% é cach equation, (4~9) and (4-10) an ADI (Alterative Directlon Implicit) §
' method is used with the SOR (Succession Over Relaxation) scheme. Also, §

before returning to Step 1, the SUR scheme 18 used to reduce the sensi-
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tivity of the system of the algebraic equations. Before calculating the
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cavity flow problem a test was made to solve a simple problem with constant

R g S o) k7 A"
e Y T 2 ]
2 )
N

velocity u and v (i.e., assuming A and B in equation (4-8) to be constant).

It was found that the FT solution is more accurate than the finite differ-~

AR

ence method. In particular, the FT method showed to be more stable than

(X
o ae CMBU ot ARt RN AT oD

; the finite difference method at high Reynolds number (i.e., large value of
% : A and B), For the solution at high Reynolds number, the FT method provides
%’ | converged solutions when the grid size is reduced. The Reynolds number of
? 100, 400, and 1,000 have been calculated. As an example, the cavity flow

g with Re = 1000 is given in Figures 10 and 11. Figure 10 provides the

; stream pattern of the steady flow in the recoil mechanism without orifice.
% Figure 11 gives the corresponding vorticity distribution in the cavity.

IV-5. Conclusion

In this chapter, the new numerical method entitled "The Finite

B

T R A T P T

, Differential Method" is introduced. The finite differential (FT) method

is shown to give more accurate results than the finite difference (FC)

method under the same flow conditions. Specifically, the convergence

B R N

and the stability of the FT method is much superior than the FC method.

T

it

For the flow with high Reynolds number of the order 103 the FT :

method may still predict stable solution provided that small grid sizes

T A e ol
- o . ¢

oS s A e N Ao B 5
" Y » e -

are used and the successive under relaxation (SUR) scheme is used between

interactions.
Although the FT method requiras much analytic work in the initial
derivation of the finite differential formula, the many flow calculation

can be solved relatively easily afterward since the finite differential

formula are similar even for different flow conditions. The FT method
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V. SUMMARY, CONCLUSION AND SUGGESTIONS

¥ i et TR

PR

The present art of the design of recoil mechanisms still relies

heavily on the one dimensional analysis of flow motion in the recoil

Pk

3 By 2k e R v e 1 S 4“'!.4\*“-.\\—’»‘". "
»:\smms.ssmmm:mwmi:.zammmmwm;m@c&umgmmmwém

"
o e ke BB s P oy ok e SR R A

: system and cn the trial and error method of experiment. The present

report attempts to improve the one dimensional fluid flow analysis in ;

Chapter II where the unsteadiness of the flow in record mechanism is

approximately incorporated into the use of the orifice discharge

coefficient. On the other hand, a simulation design is given in

Chapter III where an analys.s is given to show how the experimental
duration may be increased based on similarity argument, thereby providing

a longer time duration for the instrumental measurement as well as the

flow visualization. It should be pointed out that the physical under-

standing of the fluid motion in the recoil mechanism is still lacking.

For example, design engineers still do not know when and where the flow

T L X

in the record mechanism will tecome turbulent.

In Chapter IV, a new numerical method is developed with the aim to

calculate fluid motion at high Reynolds number in tne record system.

The preliminary calculation shows that the FT method is superior to the
FC method in the accuracy of the convergence and the convergence and the
stability of the numerical prediction. It is hoped that the design of

recoil mechanism may eventually be done tirst on the computer. Simulation

A

before an expensive experiment and the long duration of the experimen-

P T R S T

tation commences. The modernization of the design of the fluid type

I

recoil mechanism needs the accurace solution of the fluid flow inside
the recoil mechanism. In order to achieve this and it requires a

commitment of the Army Armament Research and Development Command.
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. APPENDIX A. THE 9-POINT FINITE DIFFERENTIAL SOLUTION
i OF THE VORTICITY TRANSPORT EQUATION

With A = %-Re u and B =-% Re v assumed to be known constants in a
given subregion, the linearized vorticity transport equation for a two

dimensional incompressible viscous flow is

gt + 2A gx + 2B 5y = gxx + gyy (A-1)

The initial condition or any condition for the next time incremental

step in a subregion may be approximately taken as

- 3 4= = = = 2 = 2, = _2
E(x,y,t = aO + aly + azx + a3xy + 34}' + asx + 36xy
+a xzy +3a x2y2 (A-2)
7 8
K where 9 coefficients Zi(i =1,1,2,...,8) can be determined from the 9

nodal values of £ at the boundary.

8

The boundary condition of the subregion may be approximately taken

as, for example,

Ao i
N e, 00 B SN

E(3,8) = [(ag + 30) + (b + Be)y + (e + 5,00y°] (a-3)

Bt a0 Nt g oy 0 DY

Similarly for ES’ gN and Ew.

Introducing a change of variable

£ = E eAx-!-By

ey ot B

we may reduce Eq. (A-1) to a simpler form

- 2 2= _ % -
E + (A +BYE=F +E
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with the initial and boundary conditions

(o4
(|
(ad
oy
[

I.C. = E=E(xy,t) ¢~ (Ax+BY)

B.C. X = Ax 3 €E(y,t) e—(AAx+By)

oy
fl

H

i

X = -Ax E= Ew(y,t) e(AAx—By) (A-6) %
;g

= ~(Ax+B 3

y = by E = gu(x,t) e (Ax+BAy) :
H

_ —Ax+B :

y = -Ay £ = Es(x,t) e( Ax+BAy) ;

The problem of (A-2) with (A-6) may be solved by superposition of a

steady part £° and an unsteady part LT, or

13

n

FS0v,y) + EN(x,y,t) (A~7)

or

Nt R Y 4 A S & e kB e N

PICHH

£5(x,y) + £5(x,y,t)

oy
]

RPPNY

9,

3

For the FT 9-point formula which provides an algebraic relation between the

Chae ban

central node (x = 0, y = 0) value gp with the neighboring 8-point node

value Eq. (A-7) can be evaluated at x = 0, y = 0., Details of the derivation

of the 9~point formula is given below. %
A-1. Solution to the Navier-Stokes Equation, Steady Part §
The steady part of the two-~dimensional vorticity transport equation g
now becomes % %
por -} =8 2 2,8 i

+ - (A“+B =0 (a-8) 3

gxx Eyy ( 13 %

k=

DRI
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o ) iy k!
Sk e

with boundary conditions

'

= &;(y) e-(AAx+By) . x = Ax

ony
|

E;(y) eAAx—By , x = =Ax

rej
5]
[}

(A-9)

B K S o

= £n(x) o~ (axtBly) y = by

il
w
i

$thd e rnnls

=S s e—As+BAy

£ = ’c:S(X) s y = -Ay

This problem can be solved analytically by further dividing it into

AR SR s

&

simpler problems having one or two nonhomogenous boundary conditions in

=

one direction. Due to linearity, the final solution will be the super-
position of all these simple problems, Assuming a second order polynomial

. (higher order polynomials can also be taken) for boundaries E;, E;, 5;

%
2
E
&<
=
i
2
]

and Eg, the coefficients can be found in terms of the surrounding vortici-

9 R bt B 5 P A S T b B S P A e A e b U e

ties. For example, for the east boundary for the 9-point finite differ- §
ential (steady part of Eq. (A-3)) %
£20) = ap + by + ey’ (a-10)

where § %
i 3

=] Z

2 A

a, = -

E "i4l,j 3 7

‘ 3

b =5 (2 - ) g

E 28y “Ci+l,j+1 T Citl,3-1 =

e, = =5 (£ — 2, L +E ) %

. B gpy? 11+ 141, *i41,3-1 t &
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Note should be taken that if only a steady problem is being solved, the
vorticities in the above coefficients are the same vorticities as being
calculated. However, for the case of unsteady Navier-Stokes equation, the
vorticities in these coefficients a

bE and c, are the previous time step

E? E
vorticities. In this case the unsteady solution is only part of the overall
solution which is added to the unsteady part. If the problem is calculated
from fluid at rest, the contribution of the steady part for the first time
step will be zero.

The steady vorticity transport Eq. (A-8) is now divided into two

simpler problems each with two nonhomogenous boundary conditions as

follow:

Problem (1)
LE, = 0 (A~-11)
~(Abx+By)

- 2
B.C. El = (aE + bEy + cgy e

eAAx—By

(aw + bwy + cwyz) . x = -Ax (A-12)

wm
[
il
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A
<
fl
58
«

(S SIS KA Y 10 i AL RS s R T B B DA TS B

.
utdl

~huti kst e hous

Problem (2)

-
™
N
i
(=]

(A-13)

Augrgin

¥
N
it
(=]
]
(]
I+
>
"

9 (ag + byx + chZ) o~ (AxtBAY) s ¥ = Ay (A-14)

full
[

A L R TR

(as + bsx + csxz) e-Ax+BAy sy ¥ = -Ay
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9x 3y

Solution to Problem (1)

Assuming Ei = X(x) Y(y), and substituting in the differential equationm,
the variables are separated. The two boundary conditions in the y=-direction
in this case are used to find the eigenvalues. Then the problem is reduced

to find the function An(x) in the series solution

o0
S = am -
E[(y) = ] A (%) sia 2hy &+ ) (A-15)
n=1
To do this, the above equation is differentiated with respect to x and y
and substituted in the governing differential equation (A-11) to produce

an ordinery differential equation for An(x) or

" 2 2 2
An(x) - (A“ + B” + An)An(x) =9 (A-16)

When An is the eigenvalue nm/2Ay. The two nonhomogenous boundary conditions

in the x-direction are now used to find the solution for this equation.

The solution to Problem (1) becomes

<8 _ v Ex -Ex onn_
El(x,y) = nzl (cle + c,e ) sin 2hy (y + Ay)
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EAx ~EAx
An(Ax)e - An(—Ax)e

1° 2 x  _-2E x
e - e

(4-18)

An(—Ax)eEAx - An(Ax)e-EAx
C, = 7 % -0E %
e - e

with

—-—-—-(aE1+bE2+cE3)

(A-19)
A_(~tx) = &— (awE +b.Ey + cEy)
E = JAZ + B2+ Ai

and

Ay
El = J e B gin —-— (y + Ay)dy

Ay
- -By nw -
E2 [ ye si 325-(y + Ay)dy (A-20)
- Ay

Ay _
E3 = J y2 e By sin -——-(y + Ay)dy

Solution to Problem (2)

The same procedure as in Problem (1) is repeated for Problem (2) in

Eqs. (A-13) and (A-14)

y mww&wpuw Lttt p

L vy e

et s s e i et b

by




y, Ay, x, Ax, B, and A respectively.

Adding Eqs. (A-7) and (A-21) and evaluating at x

s nmn v mn
Ep Z (e; +¢,) sin 7+ ) (g +¢,) sin 5
n=1 m=1

€15 €y Cgs and ¢, as given in Eq. (A-18)

A~2. Solution to Unstezdy Navier-Stokes Equation

steady part (A-8) and (A-9), is reduced to

1t = o

and the initial and boundary conditions become

I.C. - (AxtBy)

rr
U
r
ured
(a4
!

= gn—l(sts tO) e

B

B.C. x = Ax £ = g (y,t) o~ (Adx+By)

+AAx~B
X = -Ax E" = gulyst) e *-ty

get the central nodal value of teh steady vorticity solution as

E; = mzl (c3 e+ e, e-Fy) sin g%% (x + &%) (A-21)
where
F=JA2+Bz+u:1, M= ae
Ccq and ¢, are similar to ¢y and ¢, with x, Ax, y,Ay, A, and B replaced by

=0 ana y = 0, we

(A~22)

The neighboring 8 nodal values of vorticity are included in the coefficients

From Eq. (A-7) the problem (A-5) and (A-6), afteyr subtraction of the

(A-23)

(A~-24)

S bbb e dons
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y ‘Ay gt = EN(xat) e
t
y = -by Ef =g (x,0) €
where
2 2
N R LA
9x Jy

In order to solve the time dependent problem (A-23) with given boundary and
initial conditions (A-24) and (A-25), it is divided into five simpler

problems each having one nonzero boundary or initial condition. These are

given as fc'"ows:

Problem (3):

i
S L 6 A G L P T
3ot 6 . R

1§, = 0 3

1.C. £y = 2l (x,y) o (ARVEY) t=ty=0 33
B.C. Eo =0 ’ X = X (A"'26) §§
EO =0, y = Ay ‘;:1]

Problem (4): )
~ =

L =0 ,

I.C. g, =0, : t=0 ﬂ
v 2, _-(AAx+By) . )

B.C. El = (aEt + boty + cpty Ye , X = AX (A-27) ;
T =0 X =-x 1

1 ’ -

El =0 , y = y ’
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Problem (5
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In the above provlems, the coefficients 5, b, and ¢ are given in terms of

the boundary vorticity. For example, for the east boundary;

ap = £54q, 4/t

(=]
|

E= Gy 41 = Sqap,3-1) /2080y (A-31)

(e ]

£ Gy 301 7 a3 Y hm

Solution to Problem (3)

Because of the lincarization (assumption of constant A and B in a
subregion), the variables cau be separated and solved accordingly. The
vorticity En-l(x,y) in the initial condition is just the value of vorticity
in the subregion at initial time (previous time step is denoted by a super-
sccipt n~1) which can be approximated by a polynomial of x and y. For a

9-point finite differential, the polynomial and the coefficients are:

n-1 _ = = = = = 2 = 2 = 2 = 2 = 22
£ T(x,y) = ag+a)ytax+axytay +ax +axy +taxytagxy

(A~32)

where

n-1
i,

o i

o~ &
= . -l n-1 )
1 ZAy i,j+1 ~ %i,i-1
3= 1 En---l _ -1

2 2ax \i+l,j  "i~1,j

1 n-1 n-1
3 = ZAxdy (€1+1 ja t Ei-l,j 17 541,50 ‘5i+1,3-1)
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__1 n-1 n-1 n-—l)
2y’ (51,3+1 ey i1t %8

= __1 n-1 n-1 n-1
&g 2 (51+1,j tEia,y T 251,1)

20%
s __ 1 n-1  _ -1 o1 n-1 -1 n-1 )
%" oty (51+1, FYE R PRI Rl HE TS PR R FFE T Ry ST R LT
1 1 1 1 i
= n- n- n- n-1 n-1 n-1 ) |
= + - - - :
3y sy (E:H-l,j'*-] Si1,341 T S141,5-1 T Sie1,3-1 T 284,341 By 54 :
= _ 1 n-1 n-1 . .n-1 n-1 _a-l _ 5,0l 33
7 12, (“’1+1,j+1 B 1,5t TR, -1 Bea1, -1 45,5 T % g 3
X Ay 3
n-1 n-1 n-1 3
- - - A-33 3
285 5.1 7 2841,5 T 2544, (4-33)
The analytic solution to Problem (3) is found tc be
N [+ [se] t 1
~ _ _n _ i _ - .
£y = T 7 {e 1+ iy - 8y(epQp + e,0)) = dx(egQy + °4Q4)]}
k=1 2=1
x sin le sin % (A-34)
where
2 2
a2 4 g2 4 (kT -!ﬂ)
n=A+B 4 (2Ax) + (2Ay
= 2 RIE' 4 2 PR 4+ 3 RP'RY 4+ 2 RIF! 4 - R'R' 4+ & RI'R? SRRt
H aOEl 1 + 31E2E1 + aZElEZ + a3E2E2 + .'3.4E_,3El + aSE1E3 + aﬁE3E2

~-By 2]
ye ’ sin 2y (y + oy)dy




' E! and E! are similar to E!, E] and E! respectively with y, Ay, B and
1 2 3 2 K}

£ changed to x, Ax, A and k.

Cys €95 Cy and ¢, are the same as the steady part. Ql and Q2 are

kw k 2EAx

~EAx )2ag P~ (D ]
Q= e
1 2
2 4 (_Ef_f_)
2Ax
km k -2EAx
EAx 240x [ (-1) ]
Qz ) 2 ku 2
E + (EZ;

‘J 2
2 2 n
A+B+2A)

Again Q, and Q, are similar to Q, and Q, with Ax and k changed to Ay and
3 4 1 2

2 respectively.

Solution to Problem (4)

This problem is solved similarly by the method of separation of

variables. Assuming El = F(t,x) Y(¥), and substituting into the differential

equation (A-27), the variables are separated. The two zero boundary con-

ditions at y = Ay are used to find the eigenvalurs. Thus the problem is

reduced to finding Fz(t,x) in

2=1

2 e sin *—— (y + Ay)dy (A-35)

£ (%,y,t) = Z F, (t,%) sin 53 2Ay (y + by) (A-36)
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To find Fg(t,x), first a change of variable is made so that a homogenous

boundary condition in the x-direction is found by assuming

-%Ax
F = _L’Lﬁ‘le 'y B + o E? -
Fz = Fz A (a E + b +c E3) (A-37)
by substitution of Eq. (A-37) into Eq. (A-27) a new nonhomogenous differ-
ential equation with the variables t and x will be found with homogenous

boundary and initial condition which can be solved again by separation of

variables with the result

«© ua
~

El = 221 L Ak (t) sin (x + Ax) sin (y + Ay) + zl 5—%;§§

+ sin-——— (y + ay) (A-38)

which can be evaluated at the center of the subregion x = 0 and y =

The coefficient Ak (t) is
1

1 - e_nt)s

A (t)
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Pkl = -20x(-1)¥/ (%—:—;

® ' Rt -
£E1 £E2 + cEES) (A-39)

[
\

E ™ At Fit1,3

b, = 5o (8 - ¢ )
E = 2AtAy ‘*it+l, i+l i+1,35-1

o
|

1
(& - 28 .t & 1)
E - opeay? T3 1+1,j = "i4l,j-1

0l
[}

Solution to Problem (5)

The solution procedure for this problem is similar to Problem (4)

A

o s T B | Sl
AR d

hut only the nonhomogenity is changed from the position x = Ax to X = -AX.

e

The solution is

3

~

e

= ..
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27 221 kg A, (B s1m oy i <+ 80 stn g y O+

i BT 58

3
4

it bt
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o . XU -
Tax 3t 8l 20y (y + Ay) (A-40)

where
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o]

24x

Pk2

4Ax2

Pk2 = km

.
)
.

e o P ;j
it 04 1L Ot o A 6 A R B e

AAx

e -~ By El -1 = 5
oy (ayPp bRy ool

a =

LS e T

The solution to Problems (6) and (7) are similar to Problems (4) and (5)
with x, Ax, y, Ay, k, £, A and B changing to y, Ay, x, Ax, &, k, B and A

respectively. Also the boundaries change respectively from East and West

to North and South.
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APPENDIX B, THE 9-POINT FINITE DIFFERENTIAL SOLUTION
OF THE TWO-DIMENSIONAL POISSON EQUATION

The two-~dimensional Poisson equation and its boundary condition here

are given as

[

2 2
§ _a__g. + -a—uz’. = -f (x’z) (B—l)
= é ax Yy

; % with boundary conditions

V= wE(y) . X = AX

¥ PERe . X

| (B-2)
’ b= P, y = Ay

b=vg® y = -ty

where for the 9-point finite-differential method the boundaries will be

second order polynomials of x or y. As an example

U = a + bly + ey’ (B-3)

= V141, 5

1
= 38y Wiea,541 = Yie1,5-1)
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To solve the problem (B-1) and (B~2), it is divided into two simpler

problems as

_ B-4)
b=t Y, (

where

Problem (1):

ket LA e

by oyl

<

s
i

o

2%, b

¢1 = ‘pE(y) ’ x = Ax

3 o

¢1 = ww(y) , x = -Ax

P A

(8-5)

b= y@® =ty

£y 0l

‘\Dl = lJ)S(x) ’ y = -Ay

vy, = -£(x;y)

(8-6)

AR A
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B-1. Solution to Problem (1)

b AR AL

Again for simplicity and due to linearity, this problem is divided

into two problems each having two homogeneous boundary conditions as:

¥ (%) = ulx,y) + wix,y) (B-7)
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u= lpE(Y) 4 X = Ax

u = ww(y) s X = -Ax

u=20 s y = *Ay
and

V2w =0

w=20 , X = *Ax

W= (x) y = by

wv=9.(x y = -dy

The solution to u and w can simply be found by separation of variable and

added together to give the solution to Problem (1).

«®

b = ) [c sinh(u x) + ¢, cosh(u x)] sin 5 = (y Ay)
n=1

+ ) e, sinh(u y) + ¢, cosh(u y)] sin o (x + Ax)
3 m 4
m=1
where
(PP A -1 PN AY X - AN\
} (aE aw)E1 + (bg bw)E2 + (cé cw)E3
1 24y sinh(unAx)

1 L ) ] 1 1 L ] 1
. (aEi-aw)E1 + (bE + bw)E2 + (cE + cw)EB
2 248y sinh(unAx)
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and
. L _ am
n 20y °? Mo T 2ax

Cq and <, are similar to ¢y and ¢, but x, Ax, y, Ay, a and B are replaced

with y, 4y, x, 4x, B and A respectively.

B-2. Solution to Problem (2)

In this case first the homogenous equation is solved and with the
use of two homogenous boundary conditions, the eigenvalues are found. The

solution to Problem (2) given by Eq. (B-6) is assumed to be

(-]
= ar -
b, (x,y) = Z ¢, (x) sin 55- (y + Ay) (B-11)
m=1
To find the unknown function cn(x), Eq. (B-11) is substituted into the
Poisson equation (B-6) resulting in

-]

mzl [c;(x) - ui cn(x)] sin pn(y + Ay) = -£(x,y) (B-12)
Now the vorticity E(x,y) can be assumed to be a polynomial of x and y
related to the 9-nodal points in the finite differential element. The
coefficiunts of the polynomial are thus expressed by the 9-nodal values of
the vorticity. Now that £(x,y) is known it can be expanded in terms of
Fourier sine series and substitued in Eq. (B-12). On setting the coeffi~
cients of the sine terms on each side equal to each other, a second order
ordinary differential equation for cn(x) will result which can be sovlved
accordingly. The homogenous boundary conditions in the y-direction can

now be used to find the two constants of integration. The result of
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. Problem (2) thus becomes

- 2
Uy = 5 [cs sinh(unx) +cg cosh(u x) + ax” + bx + ¢} sin +— > (y + Ay)

AY
(B-13)
c - bAx
5 sinh (unAx)

c + sza

C, = = ———F—r
6 cosh(unAx)

I S = = o
a=-3 (a5E1+a6E2+agE3)
by
(B-14)

b = 2y(z—.lE +34E2+aE)

(alEl + a3E2 + a E! )

52
= NIN

MLy

- om
Ma T 2Ay
Note that a's are evaluated at the present vorticity values if the flow

under consideration is an unsteady flow.

1 \J \j
In this part El, EZ’ and E3 are

dy
v )
J—-A- sin 20y (y + Ay)dy

Ay
J ¥y sin 5= (y + Ay)dy (B-15)

Ay 9
J y sin (y + Ay)dy
...Ay
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The FT 9-point formula for the stream function, ¥, thus is obtained by
superposing the solutions, u:l and y,, given in Eqs. (B-10) ez (B-13),

and evaluating them at the center of the subregion x = 0, y = 0, or wp(0.0)

v = wlco.O) + wz(o.o)

p
E nw § mn
= ~c, 8in & + ¢, sin =5
n=1 2 2 m=1 4 2
&0
+ 1 g+ o) s:tn%_’L (B-16)
n=1

The velocity components u = 3y/dy and v = -3y/9x are obtained by the
differentiation of the stream function t)ll and U)Z given in Eqs. (B-10) and

(B-13) with respect to x and y. Thus the veloeity components at the center

node of the subregion up = u(0.0), v = v(0.0) are

_y
p 9y ay

o« o
nn it
= )} c,u, cos 5+  c,u_sin -
a=1 2'n 2Ay =1 3'm 2
v nm
+ ¥ [eg + ¢l u, cos 5 (B-17)
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(B~18)
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